If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+5n-800=0
a = 5; b = 5; c = -800;
Δ = b2-4ac
Δ = 52-4·5·(-800)
Δ = 16025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16025}=\sqrt{25*641}=\sqrt{25}*\sqrt{641}=5\sqrt{641}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{641}}{2*5}=\frac{-5-5\sqrt{641}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{641}}{2*5}=\frac{-5+5\sqrt{641}}{10} $
| (1/3)^x((27^(4-x))=81 | | X-40=2x-120 | | 34=14x-36 | | -3(x+7)=2 | | 9=48-4x | | 4(x+9)=2 | | 48-4x=9 | | 32+(7*x)=-3 | | 2(4x)=x+35 | | -3y+7=-4y+7 | | -1/2+g=-31/3 | | 3x+4x-6=0 | | 12,6+4m=9,6-8m | | 7(w-5)=3w-15 | | 5x+16/12=x+5 | | 12x^2-27x+10=0 | | 7(x-5)=40-2x | | 7g+100=2g+29 | | 6f+10=4f+10 | | 5e+5=3e+11 | | 3d+2=d+8 | | 50p+7=3(4-p) | | 4c+9=c+18 | | 8x-10=2x-6 | | 0-25=(8x+5)(8x-5) | | 2^(x+3)+2^(x-1)=272 | | (1/3)x=27×-4 | | 100x=100-200x | | -8+3x=33x+24 | | 10-1/4b=9 | | 0.04=x-0.02 | | 39x-18=18 |